3.29.11 \(\int \frac {(1-2 x)^{5/2}}{(2+3 x)^{3/2} (3+5 x)^{5/2}} \, dx\) [2811]

3.29.11.1 Optimal result
3.29.11.2 Mathematica [C] (verified)
3.29.11.3 Rubi [A] (verified)
3.29.11.4 Maple [A] (verified)
3.29.11.5 Fricas [C] (verification not implemented)
3.29.11.6 Sympy [F(-1)]
3.29.11.7 Maxima [F]
3.29.11.8 Giac [F]
3.29.11.9 Mupad [F(-1)]

3.29.11.1 Optimal result

Integrand size = 28, antiderivative size = 158 \[ \int \frac {(1-2 x)^{5/2}}{(2+3 x)^{3/2} (3+5 x)^{5/2}} \, dx=\frac {14 (1-2 x)^{3/2}}{3 \sqrt {2+3 x} (3+5 x)^{3/2}}-\frac {1012 \sqrt {1-2 x} \sqrt {2+3 x}}{15 (3+5 x)^{3/2}}+\frac {6388 \sqrt {1-2 x} \sqrt {2+3 x}}{15 \sqrt {3+5 x}}-\frac {6388}{25} \sqrt {\frac {11}{3}} E\left (\arcsin \left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )|\frac {35}{33}\right )-\frac {64}{25} \sqrt {33} \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right ),\frac {35}{33}\right ) \]

output
-6388/75*EllipticE(1/7*21^(1/2)*(1-2*x)^(1/2),1/33*1155^(1/2))*33^(1/2)-64 
/25*EllipticF(1/7*21^(1/2)*(1-2*x)^(1/2),1/33*1155^(1/2))*33^(1/2)+14/3*(1 
-2*x)^(3/2)/(3+5*x)^(3/2)/(2+3*x)^(1/2)-1012/15*(1-2*x)^(1/2)*(2+3*x)^(1/2 
)/(3+5*x)^(3/2)+6388/15*(1-2*x)^(1/2)*(2+3*x)^(1/2)/(3+5*x)^(1/2)
 
3.29.11.2 Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 7.37 (sec) , antiderivative size = 94, normalized size of antiderivative = 0.59 \[ \int \frac {(1-2 x)^{5/2}}{(2+3 x)^{3/2} (3+5 x)^{5/2}} \, dx=\frac {2}{75} \left (\frac {5 \sqrt {1-2 x} \left (18187+59098 x+47910 x^2\right )}{\sqrt {2+3 x} (3+5 x)^{3/2}}+2 i \sqrt {33} \left (1597 E\left (i \text {arcsinh}\left (\sqrt {9+15 x}\right )|-\frac {2}{33}\right )-1645 \operatorname {EllipticF}\left (i \text {arcsinh}\left (\sqrt {9+15 x}\right ),-\frac {2}{33}\right )\right )\right ) \]

input
Integrate[(1 - 2*x)^(5/2)/((2 + 3*x)^(3/2)*(3 + 5*x)^(5/2)),x]
 
output
(2*((5*Sqrt[1 - 2*x]*(18187 + 59098*x + 47910*x^2))/(Sqrt[2 + 3*x]*(3 + 5* 
x)^(3/2)) + (2*I)*Sqrt[33]*(1597*EllipticE[I*ArcSinh[Sqrt[9 + 15*x]], -2/3 
3] - 1645*EllipticF[I*ArcSinh[Sqrt[9 + 15*x]], -2/33])))/75
 
3.29.11.3 Rubi [A] (verified)

Time = 0.25 (sec) , antiderivative size = 171, normalized size of antiderivative = 1.08, number of steps used = 9, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.321, Rules used = {109, 27, 167, 27, 169, 27, 176, 123, 129}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(1-2 x)^{5/2}}{(3 x+2)^{3/2} (5 x+3)^{5/2}} \, dx\)

\(\Big \downarrow \) 109

\(\displaystyle \frac {2}{3} \int \frac {33 \sqrt {1-2 x} (4-x)}{\sqrt {3 x+2} (5 x+3)^{5/2}}dx+\frac {14 (1-2 x)^{3/2}}{3 \sqrt {3 x+2} (5 x+3)^{3/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle 22 \int \frac {\sqrt {1-2 x} (4-x)}{\sqrt {3 x+2} (5 x+3)^{5/2}}dx+\frac {14 (1-2 x)^{3/2}}{3 \sqrt {3 x+2} (5 x+3)^{3/2}}\)

\(\Big \downarrow \) 167

\(\displaystyle 22 \left (\frac {2}{15} \int -\frac {233-144 x}{2 \sqrt {1-2 x} \sqrt {3 x+2} (5 x+3)^{3/2}}dx-\frac {46 \sqrt {1-2 x} \sqrt {3 x+2}}{15 (5 x+3)^{3/2}}\right )+\frac {14 (1-2 x)^{3/2}}{3 \sqrt {3 x+2} (5 x+3)^{3/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle 22 \left (-\frac {1}{15} \int \frac {233-144 x}{\sqrt {1-2 x} \sqrt {3 x+2} (5 x+3)^{3/2}}dx-\frac {46 \sqrt {1-2 x} \sqrt {3 x+2}}{15 (5 x+3)^{3/2}}\right )+\frac {14 (1-2 x)^{3/2}}{3 \sqrt {3 x+2} (5 x+3)^{3/2}}\)

\(\Big \downarrow \) 169

\(\displaystyle 22 \left (\frac {1}{15} \left (\frac {2}{11} \int \frac {3 (1597 x+1011)}{\sqrt {1-2 x} \sqrt {3 x+2} \sqrt {5 x+3}}dx+\frac {3194 \sqrt {1-2 x} \sqrt {3 x+2}}{11 \sqrt {5 x+3}}\right )-\frac {46 \sqrt {1-2 x} \sqrt {3 x+2}}{15 (5 x+3)^{3/2}}\right )+\frac {14 (1-2 x)^{3/2}}{3 \sqrt {3 x+2} (5 x+3)^{3/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle 22 \left (\frac {1}{15} \left (\frac {6}{11} \int \frac {1597 x+1011}{\sqrt {1-2 x} \sqrt {3 x+2} \sqrt {5 x+3}}dx+\frac {3194 \sqrt {1-2 x} \sqrt {3 x+2}}{11 \sqrt {5 x+3}}\right )-\frac {46 \sqrt {1-2 x} \sqrt {3 x+2}}{15 (5 x+3)^{3/2}}\right )+\frac {14 (1-2 x)^{3/2}}{3 \sqrt {3 x+2} (5 x+3)^{3/2}}\)

\(\Big \downarrow \) 176

\(\displaystyle 22 \left (\frac {1}{15} \left (\frac {6}{11} \left (\frac {264}{5} \int \frac {1}{\sqrt {1-2 x} \sqrt {3 x+2} \sqrt {5 x+3}}dx+\frac {1597}{5} \int \frac {\sqrt {5 x+3}}{\sqrt {1-2 x} \sqrt {3 x+2}}dx\right )+\frac {3194 \sqrt {1-2 x} \sqrt {3 x+2}}{11 \sqrt {5 x+3}}\right )-\frac {46 \sqrt {1-2 x} \sqrt {3 x+2}}{15 (5 x+3)^{3/2}}\right )+\frac {14 (1-2 x)^{3/2}}{3 \sqrt {3 x+2} (5 x+3)^{3/2}}\)

\(\Big \downarrow \) 123

\(\displaystyle 22 \left (\frac {1}{15} \left (\frac {6}{11} \left (\frac {264}{5} \int \frac {1}{\sqrt {1-2 x} \sqrt {3 x+2} \sqrt {5 x+3}}dx-\frac {1597}{5} \sqrt {\frac {11}{3}} E\left (\arcsin \left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )|\frac {35}{33}\right )\right )+\frac {3194 \sqrt {1-2 x} \sqrt {3 x+2}}{11 \sqrt {5 x+3}}\right )-\frac {46 \sqrt {1-2 x} \sqrt {3 x+2}}{15 (5 x+3)^{3/2}}\right )+\frac {14 (1-2 x)^{3/2}}{3 \sqrt {3 x+2} (5 x+3)^{3/2}}\)

\(\Big \downarrow \) 129

\(\displaystyle 22 \left (\frac {1}{15} \left (\frac {6}{11} \left (-\frac {16}{5} \sqrt {33} \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right ),\frac {35}{33}\right )-\frac {1597}{5} \sqrt {\frac {11}{3}} E\left (\arcsin \left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )|\frac {35}{33}\right )\right )+\frac {3194 \sqrt {1-2 x} \sqrt {3 x+2}}{11 \sqrt {5 x+3}}\right )-\frac {46 \sqrt {1-2 x} \sqrt {3 x+2}}{15 (5 x+3)^{3/2}}\right )+\frac {14 (1-2 x)^{3/2}}{3 \sqrt {3 x+2} (5 x+3)^{3/2}}\)

input
Int[(1 - 2*x)^(5/2)/((2 + 3*x)^(3/2)*(3 + 5*x)^(5/2)),x]
 
output
(14*(1 - 2*x)^(3/2))/(3*Sqrt[2 + 3*x]*(3 + 5*x)^(3/2)) + 22*((-46*Sqrt[1 - 
 2*x]*Sqrt[2 + 3*x])/(15*(3 + 5*x)^(3/2)) + ((3194*Sqrt[1 - 2*x]*Sqrt[2 + 
3*x])/(11*Sqrt[3 + 5*x]) + (6*((-1597*Sqrt[11/3]*EllipticE[ArcSin[Sqrt[3/7 
]*Sqrt[1 - 2*x]], 35/33])/5 - (16*Sqrt[33]*EllipticF[ArcSin[Sqrt[3/7]*Sqrt 
[1 - 2*x]], 35/33])/5))/11)/15)
 

3.29.11.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 109
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_), x_] :> Simp[(b*c - a*d)*(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*((e + f 
*x)^(p + 1)/(b*(b*e - a*f)*(m + 1))), x] + Simp[1/(b*(b*e - a*f)*(m + 1)) 
 Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 2)*(e + f*x)^p*Simp[a*d*(d*e*(n - 1) 
+ c*f*(p + 1)) + b*c*(d*e*(m - n + 2) - c*f*(m + p + 2)) + d*(a*d*f*(n + p) 
 + b*(d*e*(m + 1) - c*f*(m + n + p + 1)))*x, x], x], x] /; FreeQ[{a, b, c, 
d, e, f, p}, x] && LtQ[m, -1] && GtQ[n, 1] && (IntegersQ[2*m, 2*n, 2*p] || 
IntegersQ[m, n + p] || IntegersQ[p, m + n])
 

rule 123
Int[Sqrt[(e_.) + (f_.)*(x_)]/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_ 
)]), x_] :> Simp[(2/b)*Rt[-(b*e - a*f)/d, 2]*EllipticE[ArcSin[Sqrt[a + b*x] 
/Rt[-(b*c - a*d)/d, 2]], f*((b*c - a*d)/(d*(b*e - a*f)))], x] /; FreeQ[{a, 
b, c, d, e, f}, x] && GtQ[b/(b*c - a*d), 0] && GtQ[b/(b*e - a*f), 0] &&  !L 
tQ[-(b*c - a*d)/d, 0] &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[-d/(b*c - a*d 
), 0] && GtQ[d/(d*e - c*f), 0] &&  !LtQ[(b*c - a*d)/b, 0])
 

rule 129
Int[1/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x 
_)]), x_] :> Simp[2*(Rt[-b/d, 2]/(b*Sqrt[(b*e - a*f)/b]))*EllipticF[ArcSin[ 
Sqrt[a + b*x]/(Rt[-b/d, 2]*Sqrt[(b*c - a*d)/b])], f*((b*c - a*d)/(d*(b*e - 
a*f)))], x] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[(b*c - a*d)/b, 0] && GtQ 
[(b*e - a*f)/b, 0] && PosQ[-b/d] &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[(d 
*e - c*f)/d, 0] && GtQ[-d/b, 0]) &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[(( 
-b)*e + a*f)/f, 0] && GtQ[-f/b, 0]) &&  !(SimplerQ[e + f*x, a + b*x] && GtQ 
[((-d)*e + c*f)/f, 0] && GtQ[((-b)*e + a*f)/f, 0] && (PosQ[-f/d] || PosQ[-f 
/b]))
 

rule 167
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_)*((g_.) + (h_.)*(x_)), x_] :> Simp[(b*g - a*h)*(a + b*x)^(m + 1)*(c + 
 d*x)^n*((e + f*x)^(p + 1)/(b*(b*e - a*f)*(m + 1))), x] - Simp[1/(b*(b*e - 
a*f)*(m + 1))   Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^p*Simp[b* 
c*(f*g - e*h)*(m + 1) + (b*g - a*h)*(d*e*n + c*f*(p + 1)) + d*(b*(f*g - e*h 
)*(m + 1) + f*(b*g - a*h)*(n + p + 1))*x, x], x], x] /; FreeQ[{a, b, c, d, 
e, f, g, h, p}, x] && LtQ[m, -1] && GtQ[n, 0] && IntegersQ[2*m, 2*n, 2*p]
 

rule 169
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_)*((g_.) + (h_.)*(x_)), x_] :> Simp[(b*g - a*h)*(a + b*x)^(m + 1)*(c + 
 d*x)^(n + 1)*((e + f*x)^(p + 1)/((m + 1)*(b*c - a*d)*(b*e - a*f))), x] + S 
imp[1/((m + 1)*(b*c - a*d)*(b*e - a*f))   Int[(a + b*x)^(m + 1)*(c + d*x)^n 
*(e + f*x)^p*Simp[(a*d*f*g - b*(d*e + c*f)*g + b*c*e*h)*(m + 1) - (b*g - a* 
h)*(d*e*(n + 1) + c*f*(p + 1)) - d*f*(b*g - a*h)*(m + n + p + 3)*x, x], x], 
 x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && LtQ[m, -1] && IntegersQ[ 
2*m, 2*n, 2*p]
 

rule 176
Int[((g_.) + (h_.)*(x_))/(Sqrt[(a_.) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]* 
Sqrt[(e_) + (f_.)*(x_)]), x_] :> Simp[h/f   Int[Sqrt[e + f*x]/(Sqrt[a + b*x 
]*Sqrt[c + d*x]), x], x] + Simp[(f*g - e*h)/f   Int[1/(Sqrt[a + b*x]*Sqrt[c 
 + d*x]*Sqrt[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x] && Sim 
plerQ[a + b*x, e + f*x] && SimplerQ[c + d*x, e + f*x]
 
3.29.11.4 Maple [A] (verified)

Time = 1.30 (sec) , antiderivative size = 219, normalized size of antiderivative = 1.39

method result size
default \(-\frac {2 \sqrt {1-2 x}\, \sqrt {2+3 x}\, \left (15510 \sqrt {5}\, \sqrt {7}\, F\left (\sqrt {10+15 x}, \frac {\sqrt {70}}{35}\right ) x \sqrt {2+3 x}\, \sqrt {1-2 x}\, \sqrt {-3-5 x}-15970 \sqrt {5}\, \sqrt {7}\, E\left (\sqrt {10+15 x}, \frac {\sqrt {70}}{35}\right ) x \sqrt {2+3 x}\, \sqrt {1-2 x}\, \sqrt {-3-5 x}+9306 \sqrt {5}\, \sqrt {2+3 x}\, \sqrt {7}\, \sqrt {1-2 x}\, \sqrt {-3-5 x}\, F\left (\sqrt {10+15 x}, \frac {\sqrt {70}}{35}\right )-9582 \sqrt {5}\, \sqrt {2+3 x}\, \sqrt {7}\, \sqrt {1-2 x}\, \sqrt {-3-5 x}\, E\left (\sqrt {10+15 x}, \frac {\sqrt {70}}{35}\right )-479100 x^{3}-351430 x^{2}+113620 x +90935\right )}{75 \left (3+5 x \right )^{\frac {3}{2}} \left (6 x^{2}+x -2\right )}\) \(219\)
elliptic \(\frac {\sqrt {-\left (-1+2 x \right ) \left (3+5 x \right ) \left (2+3 x \right )}\, \left (\frac {-980 x^{2}-98 x +294}{\sqrt {\left (\frac {2}{3}+x \right ) \left (-30 x^{2}-3 x +9\right )}}+\frac {2696 \sqrt {10+15 x}\, \sqrt {21-42 x}\, \sqrt {-15 x -9}\, F\left (\sqrt {10+15 x}, \frac {\sqrt {70}}{35}\right )}{175 \sqrt {-30 x^{3}-23 x^{2}+7 x +6}}+\frac {12776 \sqrt {10+15 x}\, \sqrt {21-42 x}\, \sqrt {-15 x -9}\, \left (-\frac {7 E\left (\sqrt {10+15 x}, \frac {\sqrt {70}}{35}\right )}{6}+\frac {F\left (\sqrt {10+15 x}, \frac {\sqrt {70}}{35}\right )}{2}\right )}{525 \sqrt {-30 x^{3}-23 x^{2}+7 x +6}}-\frac {242 \sqrt {-30 x^{3}-23 x^{2}+7 x +6}}{375 \left (x +\frac {3}{5}\right )^{2}}+\frac {-\frac {7876}{5} x^{2}-\frac {3938}{15} x +\frac {7876}{15}}{\sqrt {\left (x +\frac {3}{5}\right ) \left (-30 x^{2}-5 x +10\right )}}\right )}{\sqrt {1-2 x}\, \sqrt {2+3 x}\, \sqrt {3+5 x}}\) \(247\)

input
int((1-2*x)^(5/2)/(2+3*x)^(3/2)/(3+5*x)^(5/2),x,method=_RETURNVERBOSE)
 
output
-2/75*(1-2*x)^(1/2)*(2+3*x)^(1/2)*(15510*5^(1/2)*7^(1/2)*EllipticF((10+15* 
x)^(1/2),1/35*70^(1/2))*x*(2+3*x)^(1/2)*(1-2*x)^(1/2)*(-3-5*x)^(1/2)-15970 
*5^(1/2)*7^(1/2)*EllipticE((10+15*x)^(1/2),1/35*70^(1/2))*x*(2+3*x)^(1/2)* 
(1-2*x)^(1/2)*(-3-5*x)^(1/2)+9306*5^(1/2)*(2+3*x)^(1/2)*7^(1/2)*(1-2*x)^(1 
/2)*(-3-5*x)^(1/2)*EllipticF((10+15*x)^(1/2),1/35*70^(1/2))-9582*5^(1/2)*( 
2+3*x)^(1/2)*7^(1/2)*(1-2*x)^(1/2)*(-3-5*x)^(1/2)*EllipticE((10+15*x)^(1/2 
),1/35*70^(1/2))-479100*x^3-351430*x^2+113620*x+90935)/(3+5*x)^(3/2)/(6*x^ 
2+x-2)
 
3.29.11.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.07 (sec) , antiderivative size = 108, normalized size of antiderivative = 0.68 \[ \int \frac {(1-2 x)^{5/2}}{(2+3 x)^{3/2} (3+5 x)^{5/2}} \, dx=\frac {2 \, {\left (225 \, {\left (47910 \, x^{2} + 59098 \, x + 18187\right )} \sqrt {5 \, x + 3} \sqrt {3 \, x + 2} \sqrt {-2 \, x + 1} - 54259 \, \sqrt {-30} {\left (75 \, x^{3} + 140 \, x^{2} + 87 \, x + 18\right )} {\rm weierstrassPInverse}\left (\frac {1159}{675}, \frac {38998}{91125}, x + \frac {23}{90}\right ) + 143730 \, \sqrt {-30} {\left (75 \, x^{3} + 140 \, x^{2} + 87 \, x + 18\right )} {\rm weierstrassZeta}\left (\frac {1159}{675}, \frac {38998}{91125}, {\rm weierstrassPInverse}\left (\frac {1159}{675}, \frac {38998}{91125}, x + \frac {23}{90}\right )\right )\right )}}{3375 \, {\left (75 \, x^{3} + 140 \, x^{2} + 87 \, x + 18\right )}} \]

input
integrate((1-2*x)^(5/2)/(2+3*x)^(3/2)/(3+5*x)^(5/2),x, algorithm="fricas")
 
output
2/3375*(225*(47910*x^2 + 59098*x + 18187)*sqrt(5*x + 3)*sqrt(3*x + 2)*sqrt 
(-2*x + 1) - 54259*sqrt(-30)*(75*x^3 + 140*x^2 + 87*x + 18)*weierstrassPIn 
verse(1159/675, 38998/91125, x + 23/90) + 143730*sqrt(-30)*(75*x^3 + 140*x 
^2 + 87*x + 18)*weierstrassZeta(1159/675, 38998/91125, weierstrassPInverse 
(1159/675, 38998/91125, x + 23/90)))/(75*x^3 + 140*x^2 + 87*x + 18)
 
3.29.11.6 Sympy [F(-1)]

Timed out. \[ \int \frac {(1-2 x)^{5/2}}{(2+3 x)^{3/2} (3+5 x)^{5/2}} \, dx=\text {Timed out} \]

input
integrate((1-2*x)**(5/2)/(2+3*x)**(3/2)/(3+5*x)**(5/2),x)
 
output
Timed out
 
3.29.11.7 Maxima [F]

\[ \int \frac {(1-2 x)^{5/2}}{(2+3 x)^{3/2} (3+5 x)^{5/2}} \, dx=\int { \frac {{\left (-2 \, x + 1\right )}^{\frac {5}{2}}}{{\left (5 \, x + 3\right )}^{\frac {5}{2}} {\left (3 \, x + 2\right )}^{\frac {3}{2}}} \,d x } \]

input
integrate((1-2*x)^(5/2)/(2+3*x)^(3/2)/(3+5*x)^(5/2),x, algorithm="maxima")
 
output
integrate((-2*x + 1)^(5/2)/((5*x + 3)^(5/2)*(3*x + 2)^(3/2)), x)
 
3.29.11.8 Giac [F]

\[ \int \frac {(1-2 x)^{5/2}}{(2+3 x)^{3/2} (3+5 x)^{5/2}} \, dx=\int { \frac {{\left (-2 \, x + 1\right )}^{\frac {5}{2}}}{{\left (5 \, x + 3\right )}^{\frac {5}{2}} {\left (3 \, x + 2\right )}^{\frac {3}{2}}} \,d x } \]

input
integrate((1-2*x)^(5/2)/(2+3*x)^(3/2)/(3+5*x)^(5/2),x, algorithm="giac")
 
output
integrate((-2*x + 1)^(5/2)/((5*x + 3)^(5/2)*(3*x + 2)^(3/2)), x)
 
3.29.11.9 Mupad [F(-1)]

Timed out. \[ \int \frac {(1-2 x)^{5/2}}{(2+3 x)^{3/2} (3+5 x)^{5/2}} \, dx=\int \frac {{\left (1-2\,x\right )}^{5/2}}{{\left (3\,x+2\right )}^{3/2}\,{\left (5\,x+3\right )}^{5/2}} \,d x \]

input
int((1 - 2*x)^(5/2)/((3*x + 2)^(3/2)*(5*x + 3)^(5/2)),x)
 
output
int((1 - 2*x)^(5/2)/((3*x + 2)^(3/2)*(5*x + 3)^(5/2)), x)